Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.310
Filtrar
1.
Front Public Health ; 12: 1341304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562256

RESUMO

Objective: This study aims to investigate the impact of social isolation on the utilization of primary health services among older adults in China. Methods: Data from the China Longitudinal Aging Social Survey (CLASS) conducted in 2018 were utilized. A binary logistic regression model was established, and propensity score matching (PSM) was employed for analysis. Results: The results of the binary logistic regression showed that family isolation within social isolation had a significant negative impact on the utilization of primary health services for older adults. In contrast, there was no significant association between friend isolation, community isolation, and the utilization of primary health services. Furthermore, the PSM results, using three matching methods (nearest neighbor matching, radius matching, and kernel matching), confirmed that family isolation significantly reduced older adults' utilization of primary health services, consistent with the baseline regression findings. Conclusion: Reducing the occurrence of family isolation among older adults may be a cost-effective intervention measure. Efforts should be directed toward improving family support for older adults, promoting the utilization of primary health services, and strengthening disease prevention.


Assuntos
Serviços de Saúde , Isolamento Social , China , Estudos Longitudinais
2.
Appl Opt ; 63(8): 2101-2108, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568654

RESUMO

This paper presents the test results for high-performance and high-uniformity waveguide silicon-based germanium (Ge) photodetectors (PDs) for the O band and C band. Both wafer-scale and chip-scale test results are provided. The fabricated lateral p-i-n (LPIN) PDs exhibit a responsivity of 0.97 A/W at a bias of -2V, a bandwidth of 60 GHz, and a no-return-to-zero (NRZ) eye diagram rate of 53.125 Gb/s. Additionally, an average dark current of 22.4 nA was obtained in the vertical p-i-n (VPIN) PDs at -2V by optimizing the doping process. The device can reach an average responsivity of 0.9 A/W in the O band. The standard deviation in a wafer with a dark current and responsivity is as low as 7.77 nA and 0.03 A/W at -2V, respectively.

3.
Acta Pharm Sin B ; 14(4): 1711-1725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572109

RESUMO

Drug repurposing offers an efficient approach to therapeutic development. In this study, our bioinformatic analysis first predicted an association between obesity and lansoprazole (LPZ), a commonly prescribed drug for gastrointestinal ulcers. We went on to show that LPZ treatment increased energy expenditure and alleviated the high-fat diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Treatment with LPZ elicited thermogenic gene expression and mitochondrial respiration in primary adipocytes, and induced cold tolerance in cold-exposed mice, suggesting the activity of LPZ in promoting adipose thermogenesis and energy metabolism. Mechanistically, LPZ is an efficient inhibitor of adipose phosphocholine phosphatase 1 (PHOSPHO1) and produces metabolic benefits in a PHOSPHO1-dependent manner. Our results suggested that LPZ may stimulate adipose thermogenesis by inhibiting the conversion of 2-arachidonoylglycerol-lysophosphatidic acid (2-AG-LPA) to 2-arachidonoylglycerol (2-AG) and reduce the activity of the thermogenic-suppressive cannabinoid receptor signaling. In summary, we have uncovered a novel therapeutic indication and mechanism of LPZ in managing obesity and its related metabolic syndrome, and identified a potential metabolic basis by which LPZ improves energy metabolism.

4.
J Control Release ; 369: 531-544, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38580138

RESUMO

Stimulator of the interferon genes (STING) pathway is appealing but challenging to potentiate the innate anti-tumor immunity. In this work, nuclear-targeted chimeric peptide nanorods (designated as PFPD) are constructed to amplify innate immunity through localized DNA damage and STING activation. Among which, the chimeric peptide (PpIX-FFVLKPKKKRKV) is fabricated with photosensitizer and nucleus targeting peptide sequence, which can self-assemble into nanorods and load STING agonist of DMXAA. The uniform nanosize distribution and good stability of PFPD improve the sequential targeting delivery of drugs towards tumor cells and nuclei. Under light irradiation, PFPD produce a large amount of reactive oxygen species (ROS) to destroy nuclear DNA in situ, and the released cytosolic DNA fragment will efficiently activate innate anti-tumor immunity in combination with STING agonist. In vitro and in vivo results indicate the superior ability of PFPD to activate natural killer cells and T cells, thus efficiently eradicating lung metastatic tumor without inducing unwanted side effects. This work provides a sophisticated strategy for localized activation of innate immunity for systemic tumor treatment, which may inspire the rational design of nanomedicine for tumor precision therapy.

5.
Nat Commun ; 15(1): 3001, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589388

RESUMO

Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.

6.
ACS Nano ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628141

RESUMO

Tumor-derived extracellular vesicles (tEVs) hold immense promise as potential biomarkers for the precise diagnosis of hepatocellular carcinoma (HCC). However, their clinical translation is hampered by their inherent characteristics, such as small size and high heterogeneity and complex environment, including non-EV particles and normal cell-derived EVs, which prolong separation procedures and compromise detection accuracy. In this study, we devised a DNA cascade reaction-triggered individual EV nanoencapsulation (DCR-IEVN) strategy to achieve the ultrasensitive and specific detection of tEV subpopulations via routine flow cytometry in a one-pot, one-step fashion. DCR-IEVN enables the direct and selective packaging of multiple tEV subpopulations in clinical serum samples into flower-like particles exceeding 600 nm. This approach bypasses the need for EV isolation, effectively reducing interference from non-EV particles and nontumor EVs. Compared with conventional analytical technologies, DCR-IEVN exhibits superior efficacy in diagnosing HCC owing to its high selectivity for tEVs. Integration of machine learning algorithms with DCR-IEVN resulted in differential diagnosis accuracy of 96.7% for the training cohort (n = 120) and 93.3% for the validation cohort (n = 30), effectively distinguishing HCC, cirrhosis, and healthy donors. This strategy offers a streamlined workflow and rapid assay completion and requires only small-volume serum samples and routine clinical devices, facilitating the clinical translation of tEV-based tumor diagnosis.

7.
Diabetologia ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625583

RESUMO

AIMS/HYPOTHESIS: This study aimed to explore the added value of subgroups that categorise individuals with type 2 diabetes by k-means clustering for two primary care registries (the Netherlands and Scotland), inspired by Ahlqvist's novel diabetes subgroups and previously analysed by Slieker et al. METHODS: We used two Dutch and Scottish diabetes cohorts (N=3054 and 6145; median follow-up=11.2 and 12.3 years, respectively) and defined five subgroups by k-means clustering with age at baseline, BMI, HbA1c, HDL-cholesterol and C-peptide. We investigated differences between subgroups by trajectories of risk factor values (random intercept models), time to diabetes-related complications (logrank tests and Cox models) and medication patterns (multinomial logistic models). We also compared directly using the clustering indicators as predictors of progression vs the k-means discrete subgroups. Cluster consistency over follow-up was assessed. RESULTS: Subgroups' risk factors were significantly different, and these differences remained generally consistent over follow-up. Among all subgroups, individuals with severe insulin resistance faced a significantly higher risk of myocardial infarction both before (HR 1.65; 95% CI 1.40, 1.94) and after adjusting for age effect (HR 1.72; 95% CI 1.46, 2.02) compared with mild diabetes with high HDL-cholesterol. Individuals with severe insulin-deficient diabetes were most intensively treated, with more than 25% prescribed insulin at 10 years of diagnosis. For severe insulin-deficient diabetes relative to mild diabetes, the relative risks for using insulin relative to no common treatment would be expected to increase by a factor of 3.07 (95% CI 2.73, 3.44), holding other factors constant. Clustering indicators were better predictors of progression variation relative to subgroups, but prediction accuracy may improve after combining both. Clusters were consistent over 8 years with an accuracy ranging from 59% to 72%. CONCLUSIONS/INTERPRETATION: Data-driven subgroup allocations were generally consistent over follow-up and captured significant differences in risk factor trajectories, medication patterns and complication risks. Subgroups serve better as a complement rather than as a basis for compressing clustering indicators.

8.
J Environ Manage ; 357: 120767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560953

RESUMO

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Substâncias Húmicas/análise , Solo/química , Microbiologia do Solo , Herbicidas/química , Poluentes do Solo/química
9.
Clin Cardiol ; 47(4): e24264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563389

RESUMO

BACKGROUND: Recently, patients with type 2 diabetes mellitus (T2DM) have experienced a higher incidence and severer degree of vascular calcification (VC), which leads to an increase in the incidence and mortality of vascular complications in patients with T2DM. HYPOTHESIS: To construct and validate prediction models for the risk of VC in patients with T2DM. METHODS: Twenty-three baseline demographic and clinical characteristics were extracted from the electronic medical record system. Ten clinical features were screened with least absolute shrinkage and selection operator method and were used to develop prediction models based on eight machine learning (ML) algorithms (k-nearest neighbor [k-NN], light gradient boosting machine, logistic regression [LR], multilayer perception [(MLP], Naive Bayes [NB], random forest [RF], support vector machine [SVM], XGBoost [XGB]). Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, and precision. RESULTS: A total of 1407 and 352 patients were retrospectively collected in the training and test sets, respectively. Among the eight models, the AUC value in the NB model was higher than the other models (NB: 0.753, LGB: 0.719, LR: 0.749, MLP: 0.715, RF: 0.722, SVM: 0.689, XGB:0.707, p < .05 for all). The k-NN model achieved the highest sensitivity of 0.75 (95% confidence interval [CI]: 0.633-0.857), the MLP model achieved the highest accuracy of 0.81 (95% CI: 0.767-0.852) and specificity of 0.875 (95% CI: 0.836-0.912). CONCLUSIONS: This study developed a predictive model of VC based on ML and clinical features in type 2 diabetic patients. The NB model is a tool with potential to facilitate clinicians in identifying VC in high-risk patients.


Assuntos
Diabetes Mellitus Tipo 2 , Calcificação Vascular , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Retrospectivos , Teorema de Bayes , Calcificação Vascular/diagnóstico , Calcificação Vascular/epidemiologia , Calcificação Vascular/etiologia , Aprendizado de Máquina
10.
Hematol Oncol ; 42(3): e3265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564328

RESUMO

The next-generation sequencing technologies application discovers novel genetic alterations frequently in pediatric acute lymphoblastic leukemia (ALL). RAS signaling pathway mutations at the time of relapse ALL frequently appear as small subclones at the time of onset, which are considered as the drivers in ALL relapse. Whether subclones alterations in the RAS signaling pathway should be considered for risk group stratification of ALL treatment is not decided yet. In this work, we investigate the RAS signaling pathway mutation spectrum and the related prognosis in pediatric ALL. We employed an NGS panel comprising 220 genes. NGS results were collected from 202 pediatric ALL patients. 155 patients (76.7%) harbored at least one mutation. The incidences of RAS signaling pathway mutations are different significantly between T-ALL and B-ALL. In B-ALL, the RAS pathway is mostly involved, and NRAS (17.6%), KRAS (22.7%), and PTPN11 (7.7%) were the three most frequently mutated genes. Co-occurring mutations of CREBBP and NRAS, FLT3, or PTPN11 (p = 0.002, p = 0.009, and p = 0.003, respectively) were found in this cohort. The 3-year RFS rates for the RAS signaling pathway mutation-positive and negative cases was 76.5 % versus 89.7 % (p = 0.012). Four cases relapsed in the lately 3 years were RAS signaling pathway mutation-positive. RAS signaling pathway mutation is an important biomarker for poorer relapse-free survival in pediatric B-ALL patients despite good early MRD levels.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais , Prognóstico , Recidiva
11.
J Clin Neurosci ; 123: 123-129, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569383

RESUMO

OBJECTIVE: By analysing the difference in TNF-α levels in the peripheral blood of patients with medial temporal lobe epilepsy (mTLE) with or without hippocampal sclerosis and the correlation between TNF-α and N-acetylaspartate levels in the hippocampus, we explored the relationship between TNF-α and the degree of damage to hippocampal sclerosis neurons in medial temporal lobe epilepsy. METHODS: This is a prospective, population-based study. A total of 71 Patients with medial temporal lobe epilepsy diagnosed by clinical seizures, video-EEG, epileptic sequence MRI, and other imaging examinations were recruited from October 2020 to July 2022 in the Department of Neurology, Affiliated Hospital of Xuzhou Medical University. Twenty age-matched healthy subjects were selected as the control group. The patients were divided into two groups: the medial temporal epilepsy with hippocampal sclerosis group (positive group, mTLE-HS-P group) and the medial temporal epilepsy without hippocampal sclerosis group (negative group, mTLE-HS-N group). The levels of IL-1ß, IL-5, IL-6, IL-8, IL-17, IFN-γ and TNF-α in the peripheral blood of the patients in the three groups were detected by multimicrosphere flow immunofluorescence assay. The level of N-acetylaspartate (NAA) in the hippocampus was measured by 1H-MRS. The differences in cytokine levels among the three groups were analysed, and the correlation between cytokine and NAA levels was analysed. RESULTS: The level of TNF-α in the peripheral blood of the patients in the mTLE-HS-P group was significantly higher than that of the patients in the mTLE-HS-N and healthy control groups, and the level of TNF-α in the patients in the mTLE-HS-N group was significantly higher than that of the patients in the healthy control group. The NAA level in mTLE-HS-P group patients was significantly lower than that of mTLE-HS-N patients and healthy controls, but there was no significant difference between mTLE-HS-N patients and healthy controls (P > 0.05). Spearman correlation analysis showed that TNF-α level (rs = -0.437, P < 0.05) and the longest duration of a single seizure (rs = -0.398, P < 0.05) were negatively correlated with NAA level. Logistic regression analysis showed that there was no significant correlation between the longest duration of a single seizure and hippocampal sclerosis, but TNF-α level was closely related to hippocampal sclerosis in patients with mTLE (OR = 1.315, 95 % CI 1.084-1.595, P = 0.005). CONCLUSION: The level of TNF-α in the peripheral blood of patients with medial temporal lobe epilepsy with hippocampal sclerosis was higher, and it was correlated with NAA and hippocampal sclerosis. The high expression of TNF-α may be of important value in the evaluation of hippocampal sclerosis patients.

12.
J Transl Med ; 22(1): 349, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610029

RESUMO

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS: In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS: Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS: In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.


Assuntos
Camelídeos Americanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Humanos , Animais , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
13.
J Med Chem ; 67(8): 6313-6326, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574345

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1), an important member of type I protein arginine methyltransferases (PRMTs), has emerged as a promising therapeutic target for various cancer types. In our previous study, we have identified a series of type I PRMT inhibitors, among which ZL-28-6 (6) exhibited increased activity against CARM1 while displaying decreased potency against other type I PRMTs. In this work, we conducted chemical modifications on compound 6, resulting in a series of (2-(benzyloxy)phenyl)methanamine derivatives as potent inhibitors of CARM1. Among them, compound 17e displayed remarkable potency and selectivity for CARM1 (IC50 = 2 ± 1 nM), along with notable antiproliferative effects against melanoma cell lines. Cellular thermal shift assay and western blot experiments confirmed that compound 6 effectively targets CARM1 within cells. Furthermore, compound 17e displayed good antitumor efficacy in a melanoma xenograft model, indicating that this compound warrants further investigation as a potential anticancer agent.


Assuntos
Antineoplásicos , Melanoma , Proteína-Arginina N-Metiltransferases , Humanos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Melanoma/tratamento farmacológico , Melanoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Ensaios de Seleção de Medicamentos Antitumorais
14.
Sci Total Environ ; 927: 172069, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582117

RESUMO

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.


Assuntos
Autofagia Mediada por Chaperonas , Disfunção Cognitiva , Ferroptose , Fluoretos , Neurônios , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Disfunção Cognitiva/induzido quimicamente , Camundongos , Animais , Fluoretos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Neurônios/efeitos dos fármacos , Autofagia Mediada por Chaperonas/fisiologia , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Autofagia/efeitos dos fármacos
15.
BMJ Open ; 14(4): e080612, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589255

RESUMO

OBJECTIVE: This modelling study aimed to estimate the burden for allergic diseases in children during a period of 30 years. DESIGN: Population-based observational study. MAIN OUTCOMES AND MEASURES: The data on the incidence, mortality and disability-adjusted life years (DALYs) for childhood allergic diseases, such as atopic dermatitis (AD) and asthma, were retrieved from the Global Burden of Disease study 2019 online database. This data set spans various groups, including different regions, ages, genders and Socio-Demographic Indices (SDI), covering the period from 1990 to 2019. RESULTS: In 2019, there were approximately 81 million children with asthma and 5.6 million children with AD worldwide. The global incidence of asthma in children was 20 million. Age-standardised incidence rates showed a decrease of 4.17% for asthma, from 1075.14 (95% uncertainty intervals (UI), 724.63 to 1504.93) per 100 000 population in 1990 to 1030.33 (95% UI, 683.66 to 1449.53) in 2019. Similarly, the rates for AD decreased by 5.46%, from 594.05 (95% UI, 547.98 to 642.88) per 100 000 population in 1990 to 561.61 (95% UI, 519.03 to 608.29) in 2019. The incidence of both asthma and AD was highest in children under 5 years of age, gradually decreasing with age. Interestingly, an increase in SDI was associated with a rise in the incidence of both conditions. However, the mortality rate and DALYs for asthma showed a contrasting trend. CONCLUSIONS: Over the past three decades, there has been a worldwide increase in new asthma and AD cases, even though mortality rates have significantly declined. However, the prevalence of these allergic diseases among children varies considerably across regions, countries and age groups. This variation highlights the need for precise prevalence assessments. These assessments are vital in formulating effective strategies for prevention and treatment.


Assuntos
Asma , Dermatite Atópica , Criança , Humanos , Masculino , Feminino , Pré-Escolar , Carga Global da Doença , Anos de Vida Ajustados por Qualidade de Vida , Prevalência , Incidência , Asma/epidemiologia , Dermatite Atópica/epidemiologia , Saúde Global , Fatores de Risco
16.
EBioMedicine ; 103: 105129, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640836

RESUMO

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).

17.
Environ Pollut ; 349: 123958, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621452

RESUMO

Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.

18.
Small ; : e2401168, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616769

RESUMO

Photocatalytic water splitting using covalent organic frameworks (COFs) is a promising approach for harnessing solar energy. However, challenges such as slow kinetic dynamics in the photocatalytic oxygen evolution reaction (OER) and COFs' self-oxidation hinder its progress. In this study, an enamine-based COF coordinated is introduced with cobalt dichloride, CoCl2 (CoCl2-TpBPy). The coordination of cobalt ions with bipyridines in CoCl2-TpBPy enhances charge-carrier separation and migration, leading to effective photocatalytic OER. Under visible light irradiation, CoCl2-TpBPy achieves a notable OER rate of up to 1 mmol·g-1·h-1, surpassing the reported organic semiconductor analogs. Additionally, CoCl2-TpBPy shows minimal nitrogen evolution compared to TpBPy and ethanol-treated TpBPy (E-TpBPy), indicating cobalt plays a pivotal role in improving charge utilization and minimizing photo-oxidation. In situ X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses revealed that Co(IV) species are key to the high OER efficiency. This work highlights Co(IV) species in the efficient OER and inhibiting photo-oxidation of CoCl2-TpBPy.

19.
Psychiatry Res ; 336: 115889, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38621309

RESUMO

BACKGROUND: Depression is a highly prevalent and disabling mental health condition among adolescents. The epidemiology of depression in adolescents has been changing over time, reflecting changes in risk factors as well as disease concepts and diagnosis. However, few studies have characterized the longitudinal epidemiology of depression in adolescents. Understanding trends of disease burden provides key insights to improve resource allocation and design targeted interventions for this vulnerable population. The Western Pacific Region (WPR) is home to over 1.3 billion people with tremendous diversity in culture and socioeconomic development. The epidemiology of adolescent depression in WPR remains largely unknown. In this study, we aimed to estimate trends of disease burden attributable to depressive disorders among adolescents aged 10-24 years in WPR countries between 1990 and 2019, and to investigate period and cohort effects using the Global Burden of Disease (GBD) study database. METHODS: The study utilized data from the Global Burden of Disease, Injuries, and Risk Factors Study 2019, concentrating on adolescents aged 10 to 24 years with depression. We conducted an in-depth analysis of depression, including its age-standardized prevalence, incidence, and Disability-Adjusted Life Years (DALYs), across diverse demographics such as regions, ages, genders, and socio-demographic indexes, spanning from 1990 to 2019. RESULTS: The analysis found decreasing trends in the prevalence, incidence, and DALYs of adolescent depression in the WPR between 1990-2019, although some countries like Australia and Malaysia showed increases. Specifically, the prevalence of adolescent depression in the region decreased from 9,347,861.6 cases in 1990 to 5,551,341.1 cases in 2019. The incidence rate declined from 2,508.6 per 100,000 adolescents in 1990 to 1,947.9 per 100,000 in 2019. DALYs decreased from 371.9 per 100,000 in 1990 to ASR 299.7 per 100,000 in 2019. CONCLUSION: This study found an overall decreasing trend in adolescent depression burden in the Western Pacific Region between 1990 and 2019, with heterogeneity across countries. For 30 years, the 20-24 age group accounted for the majority of depression among adolescents Widening inequality in depression burden requires policy attention. Further analysis of risk factors contributing to epidemiological trends is warranted to inform prevention strategies targeting adolescent mental health in the region.

20.
Hum Reprod ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604654

RESUMO

STUDY QUESTION: Does severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the frozen-thawed embryo transfer (FET) cycle affect embryo implantation and pregnancy rates? SUMMARY ANSWER: There is no evidence that SARS-CoV-2 infection of women during the FET cycle negatively affects embryo implantation and pregnancy rates. WHAT IS KNOWN ALREADY: Coronavirus disease 2019 (COVID-19), as a multi-systemic disease, poses a threat to reproductive health. However, the effects of SARS-CoV-2 infection on embryo implantation and pregnancy following fertility treatments, particularly FET, remain largely unknown. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study, included women who underwent FET cycles between 1 November 2022 and 31 December 2022 at an academic fertility centre. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women who tested positive for SARS-CoV-2 during their FET cycles were included in the COVID-19 group, while those who tested negative during the same study period were included in the non-COVID-19 group. The primary outcome was ongoing pregnancy rate. Secondary outcomes included rates of implantation, biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy. Multivariate logistic regression models were applied to adjust for potential confounders including age, body mass index, gravidity, vaccination status, and endometrial preparation regimen. Subgroup analyses were conducted by time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) and by level of fever (no fever, fever <39°C, or fever ≥39°C). MAIN RESULTS AND THE ROLE OF CHANCE: A total of 243 and 305 women were included in the COVID-19 and non-COVID-19 group, respectively. The rates of biochemical pregnancy (58.8% vs 62.0%, P = 0.46), clinical pregnancy (53.1% vs 54.4%, P = 0.76), implantation (46.4% vs 46.2%, P = 0.95), early pregnancy loss (24.5% vs 26.5%, P = 0.68), and ongoing pregnancy (44.4% vs 45.6%, P = 0.79) were all comparable between groups with or without infection. Results of logistic regression models, both before and after adjustment, revealed no associations between SARS-CoV-2 infection and rates of biochemical pregnancy, clinical pregnancy, early pregnancy loss, or ongoing pregnancy. Moreover, neither the time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) nor the level of fever (no fever, fever <39°C, or fever ≥39°C) was found to be related to pregnancy rates. LIMITATIONS, REASONS FOR CAUTION: The retrospective nature of the study is subject to possible selection bias. Additionally, although the sample size was relatively large for the COVID-19 group, the sample sizes for certain subgroups were relatively small and lacked adequate power, so these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The study findings suggest that SARS-CoV-2 infection during the FET cycle in females does not affect embryo implantation and pregnancy rates including biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy, indicating that cycle cancellation due to SARS-CoV-2 infection may not be necessary. Further studies are warranted to verify these findings. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2019YFA0802604), National Natural Science Foundation of China (82130046, 82101747), Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SSMU-ZLCX20180401), Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai Sailing Program (21YF1425000), Shanghai's Top Priority Research Center Construction Project (2023ZZ02002), Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161413). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...